Electron Paramagnetic Resonance Study of Defects in γ -irradiated Marine Mussel (Mytilus galloprovincialis) and Scallop (Pecten jacobaeus) Shells

R. Köseoğlu, F. Köksal^a, and M. Birey^b

Erciyes University, Halil Bayraktar Health Services Vocational College, Kayseri, Turkey

^a Ondokuz Mayıs University, Faculty of Arts and Sciences, Physics Department, Samsun, Turkey

^b Ankara University, Faculty of Sciences, Physics Department, Ankara, Turkey

Reprint requests to Dr. R. K.; Fax: +90-352-437 5936; E-mail: rkoseoglu@ercives.edu.tr

Z. Naturforsch. **59a**, 773 – 779 (2004); received May 31, 2004

EPR studies have been performed on some gamma-irradiated marine mussels (Mytilus galloprovincialis) and scallops (Pecten jacobaeus) from the families of Mytilidae and Pectinidae, respectively. Before γ -irradiation, the EPR lines of Mytilus galloprovincialis indicated the existence of Mn²⁺ ions, which were not observed in the powders of scallop shells. γ -irradiation induced defects in powders of Mytilus galloprovincialis shells, were attributed to orthorhombic CO_3^- , axial CO_3^{3-} , orthorhombic CO_2^- , freely rotating SO_2^- , axial SO_3^- , isotropic SO_2^+ and organic free radicals. SO_3^+ irradiation induced defects in powders of Pecten jacobaeus shells were attributed to orthorhombic SO_3^- , axial SO_3^- , orthorhombic SO_3^- , orthorhombic SO_3^- , freely rotating SO_2^- , freely rotating SO_2^- , and axial SO_3^- free radicals. The EPR parameters of the free radicals were compared with literature data on similar defects.

Key words: EPR; Free Radicals; γ -irradiation; Mussel; Scallop.